找回密码
 立即注册
搜索
查看: 110|回复: 0

探寻数学规定背后的逻辑,解开分母不能为 0 的奥秘

[复制链接]

9420

主题

0

回帖

2万

积分

管理员

积分
28470
发表于 2024-10-23 19:53:20 | 显示全部楼层 |阅读模式
不知道我们有没有这个想法。数学书有时讲得不好,还有所谓奇怪的“规定”,规定分母不能为0,规定0的阶乘为1,规定负数必须为正数……

其实凡是有这么多规定的地方,所谓的“规定”都是有原因的。正是考虑到不同阶段学生的理解能力,教材才采用这种粗放的表达方式。然而,对于一个善于思考的人来说,探究这些“规则”背后的逻辑,才是我们发现数学奥秘的诀窍。

例如,想一下为什么分母不能为0(除数不能为0)。你必须知道除法和乘法是互为逆运算的。当除数为零时,您需要找到一个数字乘以零等于被除数。当被除数不为零时,这显然是找不到的(任意数乘以零都等于零)。那么 0/0 应该等于什么?根据乘法互易规则,这个结果可以等于任何数(当然,这里的0/0纯粹是两个0相除,而不是“洛皮达定律”中极限值为0的两个变量之比) ”,即“不定”模式”)但正是因为0/0可以等于任何数,所以当有人问0除以0等于什么时,我们可以回答一个随机数,而且都是正确的。不利于数学研究的标准化。

为了让数学世界变得“整齐”,我们统一规定0不能成为除数。

是否有可能建立一个思想流派,其中 0/0 被迫有意义?例如0/0=ψ,ψ代表任意实数。当然,这个学派不应该与主流数学界有任何相关的交流(毕竟道不同不相谋)。顺便问一下,你认为在这个学派下函数 y=0/x 的定义域是什么?那么函数 y=x⁰ 呢?

就像现在一样,一些学派认为 0 不是自然数。要知道国内外对于0是否是自然数一直有两种规定:一是规定0是自然数,大多数国家都是这样,二是规定0不是自然数,比如日本。建国以来,我国中小学教材一直规定自然数集合不包括0。现在国外数学界大多规定0为自然数。为了便于国际交流,国家技术监督局于1994年11月颁布的《中华人民共和国国家标准物理科学技术中使用的数学符号》规定,自然数集合包括0。

数学中的一些“规则”本质上是操作规则适应的产物。

为什么0的阶乘是1?初始设置是使阶乘的计算规律适应0。

进一步将阶乘运算规则适应实数域和复数域还产生了神奇的伽马函数(Gamma),这也是伟大的欧拉的杰作:

我不禁向数学先驱们致敬。不过原理很复杂,后面我会专门写一篇文章来介绍。

而且,乘法中的“负减正”本质上是运算规则适应的结果:



将乘法分配律应用于负数会产生“负数乘以负数等于正数”。

如下,如果将乘法和加法的分配律应用到下面的公式中:

0 = (-1) × (1 + (-1)) = (-1) × 1 + (-1) × (-1)

必须有:

(-1) × (-1) = 1

至于“负数为正数”,之前已有文章讨论过——为什么“负数为正数”?

如果你思考一个看似平凡的地方,你就能发现数学的乐趣。因为数学带给我们的不仅仅是能够解决数学问题。

那么你可能会问,为什么数学书上没有明确解释“规定”背后的原因,而一定要强行用规定来描述。

要知道,数学的普及性和严谨性往往很难兼得。一条小规矩,可能会导致水深火热。例如,在纯代数的背景下,在不引入极限语言的情况下,甚至很难解释为什么 y=x² 的取值范围是 [0,+∞)。

你可能会说,为什么我要解释或证明这么明显的事情呢?你凭直觉就能明白。难道我们不应该把心思浪费在这些琐碎的问题上吗?

当时的毕达哥拉斯学派也有同样的想法,认为两个有理数可以任意接近,因此数轴上除了有理数之外没有其他数字。

结果呢?谁都知道他被打了脸。

这件事发生后,数学家们感到害怕,觉得直觉可能不可靠,有一天可能会为一个“似乎”正确的命题找到反例,羞辱所有以前的数学家。于是数学家开始对数学命题给出严格的逻辑证明。

很少有人在不需要思考的地方思考。



要知道,根据人类的直观经验,地球是平的,就像这样:

否则就不会有“天是圆的,地是圆的”的概念。然而,早在古希腊,亚里士多德就通过思考得出了地球是球形的结论。他在公元前350年写的《论天》一书中,对地球的球形提出了几种论证:

1、远航的船,并不是越来越小,最终消失,而是桅杆随着船体慢慢沉入大海,船从远方而来。海天交汇处,总是先见桅杆,后见船。

2、同时,同一根木杆在地球上不同的地方,影子的长度是不同的。

3、当人们沿着南北方向移动时,看到的星空并不完全相同。一些星座会消失,一些新的星座会出现。例如,埃及有一些星星在600英里外的塞浦路斯是看不到的。

4. 月食期间,地球在月球上的影子是弧形的。

稍后,埃拉托色尼甚至在地球是球体的基础上,首次测量了地球的周长(测量地点的子午线长度,即子午线圈的周长)。要知道,这已经是两千多年前的事了。

另外,数理逻辑和形式逻辑起源于古希腊。中世纪欧洲文艺复兴时期出现了大量可以追溯到古希腊的思想。这促成了科学与哲学的分离,并最终在牛顿时代数学的辉煌下形成了现代科学。 (科学是一个完整的实验体系和方法论)。

正是思想赋予了人类伟大。

依靠“大脑”的智慧,从未离开过太阳系(人造探测器从未飞出过太阳系,人类足迹最远也只到过月球)的人类,其实已经能够探索宇宙了。宇宙的秘密:

从光谱到宇宙:
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|【科创星域】 ( 京ICP备20013102号-15 )

GMT+8, 2025-5-6 05:48 , Processed in 0.751044 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表